Polynomial knot invariants via R-matrices
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In this document we present a construction of the Jones polynomial, denoted Vi, (-) € Z[t~1/2,¢'/2], using
R-matrices. The Jones polynomial is uniquely characterized by the two following relations:

WL () =tV (1) = (Y2 =72V (t)  (skein relation) (1)
Vo(t) =1 (2)

where O denotes the trivial knot and,
AN /
L, L_ Lo

1 Braid group

Definition 1.1. The braid group in n strands, denoted B,, is defined by n — 1 generators o1, ...,0,_1 and
the relations:

0,0 = 0404 |i—j|227 (4)

0i0i410; = 0441050511 1 €{1l,...,n—1}. (5)

There is a unique surjective group homomorphism from B,, to &,, that send o; to 7; = (¢ i+ 1).

2 Topology of braids

Theorem 2.1. Two braid diagrams represent the same braid if and only if they are related by a finite
sequence of braid moves. That is:

{braids} _ {braid diagrams}
equivalence  braid moves

Remark 2.2.

{braids} {oriented links}
equivalence equivalence

Theorem 2.3 (Alexander’s theorem). Every oriented link arises as the closure of a braid.

Theorem 2.4. The closure of two braid diagrams o and ¢’ represent equivalent links if and only if there is
a finite sequence of braid moves and Markov moves taking o to ¢’. That is

(i {oriented links} {braids}

equivalence ~ braid moves, Markov moves’
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Figure 1: Markov moves

3 Representation theory

3.1 B, representations with R-matrices

Let V be a two dimensional vector space (or a free rank two Q[t'/2,¢t~'/?]-module). We denote by 7; =
(ii+1) € G, the transposition between i and ¢+ 1. These elements generate &,, as a group. One can define
the following representation of the symmetric group:

b S, — yen
"m0V e PeId®t
where
1 0 0 0
0010
P = 0100 |€ End(V ® V).
00 01

Then, thanks to the natural surjective homomorphism B,, — &,, defined by o; + 7;, we have a representation
of the braid group:

| B, — yen

U o s 1420 g p g [d®m—i-1)

Modifying the above representation we try to obtain a representation 1, : B,, — End(V®") defined by:
Un(07) =1d°"Y @ R 1d®0 Y,

for some linear map R: V®V — V ® V. To obtain such a representation 1, of the braid group B5,, the
map 1, is required to satisfy the following relations,

Un(0i0;) = n(ojoi),  i—jl <2, (6)
V(0i0i4105) = Y(0i410i0i41). (7)
The relation (6) is always satisfied. To obtain (7), the matrix R must satisfy the relation:

(ReIdy)(Idy @ R)(R®1dy) = (Idy ® R)(R®Idy)(Idy @ R).

This equation is called the Yang-Baxter equation, and a solution to it is called a R-matrix.
If we denote by R(ex ® ¢;) = Zi’j Rf”;ei ® e;, and Rfjl =0if i+ j = k + [, we say that R satisfies the
property of charge conservation. In this case, R preserves the three subspaces of V ® V spanned by the bases

{eo ®ep}, {eo®er,e1 ®ep} and {e; ® er}. This allows us to use the following notation:

S oo e
[eoRE STES @)
o0 o0 O
~- O O O



Figure 2: Illustration of Yang-Baxter’s equation

with some computations, the Yang-Baxter equation turns into:
blcd+ab+a®) =0, blcd+bf —f*)=0
e(cd+ae—a?) =0, e(cd+ef—f*)=0
be(b—e) =0, bde=0, bce=0.
These equations are symmetrics under the interchange of b and e. If one supposes that b and e are not equal

to 0, then the equations imply that b = e and a = ¢ = d = f = 0. This does not define a representation.
Therefore, we consider the case that b = 0 and e # 0. In this case,

a’>—ae=cd= f*—ef.

Hence,
d
eza—%, (a—fila+ f—e)=0.

Corresponding to the two cases a — f = 0 and a + f — e = 0, we obtain the following two R-matrices:

a 0 0 0 a 0 0 0

0 0 c 0 0 0 c 0

= 0 d a—cdfa 0 |’ ft2 = 0 d a—cd/a 0 ' (8)
00 0 a 0 0 0 —cd/a

3.2 Markov moves and representations.

Let V be a finite-dimensional vector space over C (or a free rank-two Q[t~1/2,t/2]-module) with basis
B = {e;};. We have the following identification:

w: End(V) = VeV
- f= Z?:l fiei +— Z?:l fi®e;

This identification leads to the following diagrammatic presentation of a braid group representation:

b ﬁﬁ U (D)

Vv VvV

The idea of finding a link invariant is now to mimic the closure of a braid. Thanks to the previous presentation
of a braid representation, we can now think of evaluating each linear form on each element of V. To do this,
we will use the trace of a linear map. This can be seen as follows:

Tr:End(V) SV eV % C,
where,
VeV — C
o fes — f(2)



Diagrammatically, we will represent it as follows:

e | 2

Further, we can define:

EndVeV) VeV VeV — V*®V ~End(V)

Try :
? ’ 9; ® fi ®e; @b — gi(bj) fi ® e

Diagrammatically, this can be represented as:

TI‘Q

Vv V

For example if V is a two dimensional vector space with basis {ep,e1}, a linear map A € End(V @ V) is
represented by a matrix A = (a; ;)1<i j<4, With respect to the basis {ey ® eg,e0 ® e1,e1 ® €p,e1 ® €1} of

V ® V. Then
a a a a
= (il i)
We remark that, in the case of a two dimensional vector space,
Tr(Try(4)) = Tr(A)
that is consistent with the diagrammatical presentation.

Proposition 3.1. Let (¢,), be a family of representations of the groups B,, associated with the R-matrix
R. One defines

| Link —» C
PRELL — (b))

where by, is a braid whose closure is isotopic to L. Then pp is well-defined and a link invariant if and only if
Tro(RE) = Idy. (9)

Diagrammatically, we can intuitively understand this proposition. Indeed, the fact that Tro(R*!) = Idy
is presented as follows:

% V*
T

Ril —

|

% |4



For a given braid b € B,,, we denote by b:=b® 1 € B+1, thus,

For the real proof of the proposition, we need to introduce:
Trpy1 : End(VE" M) ~ (VE" @ V)* @ (VE" @ V)
~(VENVQV VRV ~(VE) ' oV eV e Ve
®n ®n
1" oveld ™7, (VE™)* @ VO™ ~ End(V®")

Lemma 3.2. These family of linear maps satisfy the following identities, let f € End(V®"+1) g € End(V®")
and h € End(V @ V):

1. Tr(Trn1(f)) = Tr(f),

2. Trpq1(fo(g®ldy)) = Trop1(f) o g,
3. Trpqa((g®1dv) o f) = g o Traqa(f),
4. T, (IdQ" ' @ h) = 1dP" ™ @ Tra(h).

One can prove the Proposition 3.1:

Proof. Thanks to Theorem 2.4, we need to prove that Tr(¢(:)) satisfies (9) iff Tr(¢()) is invariant under
Markov moves. The invariance under MI is follows from the properties of the trace, for all b,b" € B,,:

Tr(t)(bb)) = Tr(yp (D)$(b')) = Tr(p() (b)) = Tr((b'D)),

so it is always true.
For MII, let us use Lemma 3.2,

Tr(y((b @ 1oy, ")) = Te(Trpr1 (Y(b© 1) 0 ¢(0, 1)),
because ¥(b® 1) = ¢¥(b) ® Idy, we have,
Tr 1 (¥(0) © Ty 0 9p(07,1)) = ¥(B) © Tra (147" ® RF1)) = 3h(b) o (IAP" ™" @ Tra (R*))
O

The problem is that, with the matrices R; and Ry from (10), imposing Trg(Rzil) =I5 is too strong a
condition, because this leads to:

R1: ) R2:

O O =
QL O O
o O =
/L O O
_— o O

(10)

o

O Oalr o
— o o o
o o o o

0

o
o
o

The idea now is to take a matrix that satisfies one of the two forms in (10) and use the corresponding
twisted representation to enforce the Markov moves.



3.3 Jones polynomial via R-matrices

We choose the matrix:

—tt/2 ¢ 0 0
0 0 —t 0
R1 = 0 ¢ t3/2 7t1/2 O (S EHd(V@V)
0 0 0 —t1/2

To create a link invariant thanks to the previous matrix, we consider the following linear map:

h= ( 720 ) € End(V).

0 —t1/2
Then,
1 0 0 0
0 0 2 0
(Idv @ h) - By = 0 /2 1—-t 0
0 0 0 t
and,
t=1 0 0 0
-1 0 1—t 1+ ¢tY2 ¢
(Idy ® h) - Ry = 0 1 0 0
0 0 0 1
therefore, Tra((Idy ® h)RE') = Idy. Schematically, this gives:
V* V*
R =
|
V V

Furthermore, by the charge conservation property of Ry, it is straightforward to check that
(h@h) Ry =Ry - (h®h).
Theorem 3.3. Let L be an oriented link and b a braid whose closure is isotopic to L. Then,
Vi () = Te(w(b) - h®™), (11)
is invariant under the MI and MII moves. Further,
V2 (t) = —(t'2 + 72V ().

Proof. The invariance under Markov moves is shown above. We now prove its equality to the Jones polyno-
mial as follows. First, we have:
VE(t) = Tr(h) = —tY/? —¢71/2,

It is now sufficient to verify that (11) satisfies the same skein relation as the Jones polynomial. Indeed,

t7 'Ry —tRy!

—t1/2 o 0 0 —¢1/2 0 0 0
_ -1 0 0 —t 0 ; 0 t3/2 /2 gt 0
0 —t 3/2—¢/2 9 0 —t1 0 0

0 0 0 —t1/2 0 0 0 —t1/2

= (t1/2 — til/Q)IdV(@V.



3.4 Burau representation and Alexander polynomial

The Burau representation of ,, is given by the R-matrix:

t=1/2 ¢ 0 0

0 0 1 0

R2: 0 1 t_1/2_t1/2 O
0 0 0 —¢1/2

and the endomorphism:
t1/2 0
h = 0 412

As for Jones polynomial, it is easy to verify that Try((Idy ®2)- RE') = Idy and (h@h)- Ry = Ry- (h®h).
This implies that Tr(h®™ - 4f2(.)) is invariant under MI and MII. However Tr(h®™ - )%2(.)) is always equal
to 0. To obtain a non-trivial invariant from this representation, we consider a modification where we do not
take the trace with respect to the first entry of V®", as in the following theorem.

Theorem 3.4. Let L be an oriented link and b € B,, a braid whose closure is isotopic to L. Then, for the
above representation v,,, and the linear map h the following equation holds for some scalar c:

Tras,..n ((1 ® h®(”_1)¢n(b)> =c¢Idy,

where Tro 3 ., denotes the trace on the 2,3, ..., n—th entries of V®". Further, c is an isotopy invariant of
L. Moreover, c is equal to the Alexander polynomial of L.
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