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In this document we present a construction of the Jones polynomial, denoted VL(·) ∈ Z[t−1/2, t1/2], using
R-matrices. The Jones polynomial is uniquely characterized by the two following relations:

t−1VL+(t) − tVL−(t) = (t1/2 − t−1/2)VL0(t) (skein relation) (1)
VO(t) = 1 (2)

(3)

where O denotes the trivial knot and,

L+ L− L0

1 Braid group
Definition 1.1. The braid group in n strands, denoted Bn, is defined by n− 1 generators σ1, . . . , σn−1 and
the relations:

σiσj = σjσi |i− j| ≥ 2, (4)
σiσi+1σi = σi+1σiσi+1 i ∈ {1, . . . , n− 1}. (5)

There is a unique surjective group homomorphism from Bn to Sn that send σi to τi = (i i+ 1).

2 Topology of braids
Theorem 2.1. Two braid diagrams represent the same braid if and only if they are related by a finite
sequence of braid moves. That is:

{braids}
equivalence

∼=
{braid diagrams}

braid moves .

Remark 2.2.
{braids}

equivalence ≇
{oriented links}

equivalence .

Theorem 2.3 (Alexander’s theorem). Every oriented link arises as the closure of a braid.

Theorem 2.4. The closure of two braid diagrams σ and σ′ represent equivalent links if and only if there is
a finite sequence of braid moves and Markov moves taking σ to σ′. That is

L̃ink := {oriented links}
equivalence

∼=
{braids}

braid moves, Markov moves .
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Figure 1: Markov moves

3 Representation theory
3.1 Bn representations with R-matrices
Let V be a two dimensional vector space (or a free rank two Q[t1/2, t−1/2]-module). We denote by τi =
(i i+1) ∈ Sn the transposition between i and i+1. These elements generate Sn as a group. One can define
the following representation of the symmetric group:

ϕn :
∣∣∣∣ Sn −→ V ⊗n

τi 7−→ Id⊗(i−1) ⊗ P ⊗ Id⊗(n−i−1) .

where

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ∈ End(V ⊗ V ).

Then, thanks to the natural surjective homomorphism Bn → Sn defined by σi 7→ τi, we have a representation
of the braid group:

ψn :
∣∣∣∣ Bn −→ V ⊗n

σi 7−→ Id⊗(i−1) ⊗ P ⊗ Id⊗(n−i−1) .

Modifying the above representation we try to obtain a representation ψn : Bn → End(V ⊗n) defined by:

ψn(σi) = Id⊗(i−1) ⊗R⊗ Id⊗(n−i−1),

for some linear map R : V ⊗ V → V ⊗ V . To obtain such a representation ψn of the braid group Bn, the
map ψn is required to satisfy the following relations,

ψn(σiσj) = ψn(σjσi), |i− j| ≤ 2, (6)
ψ(σiσi+1σi) = ψ(σi+1σiσi+1). (7)

The relation (6) is always satisfied. To obtain (7), the matrix R must satisfy the relation:

(R⊗ IdV )(IdV ⊗R)(R⊗ IdV ) = (IdV ⊗R)(R⊗ IdV )(IdV ⊗R).

This equation is called the Yang-Baxter equation, and a solution to it is called a R-matrix.
If we denote by R(ek ⊗ el) =

∑
i,j R

k,l
i,j ei ⊗ ej , and Rk,l

i,j = 0 if i + j = k + l, we say that R satisfies the
property of charge conservation. In this case, R preserves the three subspaces of V ⊗V spanned by the bases
{e0 ⊗ e0}, {e0 ⊗ e1, e1 ⊗ e0} and {e1 ⊗ e1}. This allows us to use the following notation:

R =


a 0 0 0
0 b c 0
0 d e 0
0 0 0 f
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Figure 2: Illustration of Yang-Baxter’s equation

with some computations, the Yang-Baxter equation turns into:

b(cd+ ab+ a2) = 0, b(cd+ bf − f2) = 0
e(cd+ ae− a2) = 0, e(cd+ ef − f2) = 0
be(b− e) = 0, bde = 0, bce = 0.

These equations are symmetrics under the interchange of b and e. If one supposes that b and e are not equal
to 0, then the equations imply that b = e and a = c = d = f = 0. This does not define a representation.
Therefore, we consider the case that b = 0 and e ̸= 0. In this case,

a2 − ae = cd = f2 − ef.

Hence,
e = a− cd

f
, (a− f)(a+ f − e) = 0.

Corresponding to the two cases a− f = 0 and a+ f − e = 0, we obtain the following two R-matrices:

R1 =


a 0 0 0
0 0 c 0
0 d a− cd/a 0
0 0 0 a

 , R2 =


a 0 0 0
0 0 c 0
0 d a− cd/a 0
0 0 0 −cd/a

 . (8)

3.2 Markov moves and representations.
Let V be a finite-dimensional vector space over C (or a free rank-two Q[t−1/2, t1/2]-module) with basis
B = {ei}i. We have the following identification:

u :
∣∣∣∣ End(V ) ∼−−→ V ∗ ⊗ V
f =

∑n
i=1 fiei 7−→

∑n
i=1 fi ⊗ ei

This identification leads to the following diagrammatic presentation of a braid group representation:

The idea of finding a link invariant is now to mimic the closure of a braid. Thanks to the previous presentation
of a braid representation, we can now think of evaluating each linear form on each element of V . To do this,
we will use the trace of a linear map. This can be seen as follows:

Tr : End(V ) u−→ V ∗ ⊗ V
v−→ C,

where,

v :
∣∣∣∣ V ∗ ⊗ V −→ C
f ⊗ x 7−→ f(x) .
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Diagrammatically, we will represent it as follows:

Further, we can define:

Tr2 :
∣∣∣∣ End(V ⊗ V ) ≃ V ∗ ⊗ V ∗ ⊗ V ⊗ V −→ V ∗ ⊗ V ≃ End(V )

gj ⊗ fi ⊗ ei ⊗ bj 7−→ gj(bj)fi ⊗ ei
.

Diagrammatically, this can be represented as:

For example if V is a two dimensional vector space with basis {e0, e1}, a linear map A ∈ End(V ⊗ V ) is
represented by a matrix A = (ai,j)1≤i,j≤4, with respect to the basis {e0 ⊗ e0, e0 ⊗ e1, e1 ⊗ e0, e1 ⊗ e1} of
V ⊗ V . Then

Tr2(A) =
(
a1,1 + a2,2 a1,3 + a2,4
a3,1 + a4,2 a3,3 + a4,4

)
.

We remark that, in the case of a two dimensional vector space,

Tr(Tr2(A)) = Tr(A)

that is consistent with the diagrammatical presentation.

Proposition 3.1. Let (ψn)n be a family of representations of the groups Bn associated with the R-matrix
R. One defines

ρR :
∣∣∣∣ L̃ink −→ C

L 7−→ Tr(ψ(bL))
where bL is a braid whose closure is isotopic to L. Then ρR is well-defined and a link invariant if and only if

Tr2(R±1) = IdV . (9)

Diagrammatically, we can intuitively understand this proposition. Indeed, the fact that Tr2(R±1) = IdV

is presented as follows:
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For a given braid b ∈ Bn, we denote by b̃ := b⊗ 1 ∈ Bn+1, thus,

For the real proof of the proposition, we need to introduce:

Trn+1 : End(V ⊗n+1) ≃ (V ⊗n ⊗ V )∗ ⊗ (V ⊗n ⊗ V )
≃ (V ⊗n)∗ ⊗ V ∗ ⊗ V ⊗n ⊗ V ≃ (V ⊗n)∗ ⊗ V ∗ ⊗ V ⊗ V ⊗n

Id⊗n⊗v⊗Id⊗n

−−−−−−−−−→ (V ⊗n)∗ ⊗ V ⊗n ≃ End(V ⊗n)

Lemma 3.2. These family of linear maps satisfy the following identities, let f ∈ End(V ⊗n+1), g ∈ End(V ⊗n)
and h ∈ End(V ⊗ V ):

1. Tr(Trn+1(f)) = Tr(f),

2. Trn+1(f ◦ (g ⊗ IdV )) = Trn+1(f) ◦ g,

3. Trn+1((g ⊗ IdV ) ◦ f) = g ◦ Trn+1(f),

4. Trn+1(Id⊗n−1
V ⊗ h) = Id⊗n−1

V ⊗ Tr2(h).

One can prove the Proposition 3.1:

Proof. Thanks to Theorem 2.4, we need to prove that Tr(ψ(·)) satisfies (9) iff Tr(ψ(·)) is invariant under
Markov moves. The invariance under MI is follows from the properties of the trace, for all b, b′ ∈ Bn:

Tr(ψ(bb′)) = Tr(ψ(b)ψ(b′)) = Tr(ψ(b′)ψ(b)) = Tr(ψ(b′b)),

so it is always true.
For MII, let us use Lemma 3.2,

Tr(ψ((b⊗ 1)σ±1
n )) = Tr(Trn+1(ψ(b⊗ 1) ◦ ψ(σ±1

n ))),

because ψ(b⊗ 1) = ψ(b) ⊗ IdV , we have,

Trn+1(ψ(b) ⊗ IdV ◦ ψ(σ±1
n )) = ψ(b) ◦ Trn+1((Id⊗n−1

V ⊗R±1)) = ψ(b) ◦ (Id⊗n−1
V ⊗ Tr2(R±1))

The problem is that, with the matrices R1 and R2 from (10), imposing Tr2(R±1
i ) = I2 is too strong a

condition, because this leads to:

R1 =


1 0 0 0
0 0 1

d 0
0 d 0 0
0 0 0 1

 , R2 =


1 0 0 0
0 0 0 0
0 d 1 0
0 0 0 0

 . (10)

The idea now is to take a matrix that satisfies one of the two forms in (10) and use the corresponding
twisted representation to enforce the Markov moves.

5



3.3 Jones polynomial via R-matrices
We choose the matrix:

R1 =


−t1/2 0 0 0

0 0 −t 0
0 −t t3/2 − t1/2 0
0 0 0 −t1/2

 ∈ End(V ⊗ V ).

To create a link invariant thanks to the previous matrix, we consider the following linear map:

h =
(

−t−1/2 0
0 −t1/2

)
∈ End(V ).

Then,

(IdV ⊗ h) ·R1 =


1 0 0 0
0 0 t3/2 0
0 t1/2 1 − t 0
0 0 0 t


and,

(IdV ⊗ h) ·R−1
1 =


t−1 0 0 0
0 1 − t−1 t−1/2 0
0 t−1 0 0
0 0 0 1


therefore, Tr2((IdV ⊗ h)R±1

1 ) = IdV . Schematically, this gives:

Furthermore, by the charge conservation property of R1, it is straightforward to check that

(h⊗ h) ·R1 = R1 · (h⊗ h).

Theorem 3.3. Let L be an oriented link and b a braid whose closure is isotopic to L. Then,

V B
b (t) = Tr(ψ(b) · h⊗n), (11)

is invariant under the MI and MII moves. Further,

V B
b (t) = −(t1/2 + t−1/2)VL(t).

Proof. The invariance under Markov moves is shown above. We now prove its equality to the Jones polyno-
mial as follows. First, we have:

V B
Id(t) = Tr(h) = −t1/2 − t−1/2.

It is now sufficient to verify that (11) satisfies the same skein relation as the Jones polynomial. Indeed,

t−1R1 − tR−1
1

= t−1


−t1/2 0 0 0

0 0 −t 0
0 −t t3/2 − t1/2 0
0 0 0 −t1/2

 − t


−t−1/2 0 0 0

0 t−3/2 − t−1/2 −t−1 0
0 −t−1 0 0
0 0 0 −t−1/2


= (t1/2 − t−1/2)IdV ⊗V .
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3.4 Burau representation and Alexander polynomial
The Burau representation of Bn is given by the R-matrix:

R2 =


t−1/2 0 0 0

0 0 1 0
0 1 t−1/2 − t1/2 0
0 0 0 −t1/2

 .

and the endomorphism:

h =
(
t1/2 0
0 −t−1/2

)
As for Jones polynomial, it is easy to verify that Tr2((IdV ⊗h) ·R±1

2 ) = IdV and (h⊗h) ·R2 = R2 ·(h⊗h).
This implies that Tr(h⊗n · ψR2(·)) is invariant under MI and MII. However Tr(h⊗n · ψR2(·)) is always equal
to 0. To obtain a non-trivial invariant from this representation, we consider a modification where we do not
take the trace with respect to the first entry of V ⊗n, as in the following theorem.

Theorem 3.4. Let L be an oriented link and b ∈ Bn a braid whose closure is isotopic to L. Then, for the
above representation ψn, and the linear map h the following equation holds for some scalar c:

Tr2,3,...,n

(
(1 ⊗ h⊗(n−1)ψn(b)

)
= c IdV ,

where Tr2,3,...,n denotes the trace on the 2, 3, . . . , n−th entries of V ⊗n. Further, c is an isotopy invariant of
L. Moreover, c is equal to the Alexander polynomial of L.
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