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1 Introduction
In order to access the categorification of the WRT invariants, one of the current works is to endow
the categorification of link invariants with an additional algebraic structure. In [QRSW23] Qi,
Robert, Sussan and Wagner endowed Khovanov-Rozansky homology with an action of the algebra
sl2 but in [QRSW24], it is implied that this action would come from the action of a larger Lie
algebra, the positive half algebra of Witt W∞

−1.
In this work we present the sl2 structure put on the Khovanov-Rozansky homology (section 5)

by defining an sl2-action on foams and state space (section 3.3) then correcting it thanks to green
dots (section 4.2). At the same time we will work on the action of W∞

−1 on foams and state-space
which is a first work in order to equip the Khovanov-Rozansky homology of a W∞

−1-action.
The logical continuation of this master’s thesis is to define the Khovanov-Rozansky glN -homology

equipped with the action of the Holf algebra U(W∞
−1). For this, some relations on Witt green dots

need to be found like green-dots migrations (lemma 4.3) or floating green dots.

Conventions

Let k be a ring with unity. For all x ∈ k we set x := 1 − x.
Throughout most of the paper we will fix a natural number N .
The algebras ZN := Z[X1, . . . , XN ]SN and k[X1, . . . , XN ]SN of symmetric polynomials will play

a central role in this paper. They are non-negatively graded by imposing that deg(Xi) = 2. The
ith elementary, complete homogeneous, and power sum symmetric polynomials in X1, . . . , XN are
denoted by Ei, Hi and Pi respectively.

Throughout most of this paper we invert 2 in the ground ring.
For k ∈ N we denote by Symk the set of symmetric polynomials with Z coefficients in k

variables. In particular ZN = SymN . When working in such a ring, we will let ei, hi and pi be
the ith elementary, complete homogeneous, and power sum symmetric polynomials respectively
without reference to the variables. The ring Symk is graded by imposing that ei is degree 2i. We
denote by XA = (Xj)j∈A where A is a subset of {1, . . . , N}.

For a Z-graded vector space V , let Vi denote the subspace in degree i. Let qnV denote the
Z-graded vector space where (qnV )i = Vi−n.

For n ∈ Z, let [n] := qn−q−n

q−q−1 = ∑n−1
i=0 q

n−1−2i, for k ∈ N we let [k]! = ∏k
j=1[j]. Finally, for m ∈ Z

and a ∈ N, define: [
m

a

]
=

a∏
i=1

[m+ 1 − i]
[i] .

Note that if m is non-negative, one has
[m

a

]
= [m]!

[a]![m−a]! .
Complexes will be taken to be cohomologically graded, in other words the ith differential goes

from Ci to Ci+1. For a complex C, we let tiC denote the shifted complex whose piece in cohomo-
logical degree i+ j is the piece of C in cohomological degree j, in other words: (tjC)i = Ci−j .

2 Topological preliminaries

2.1 Webs and Foams

Definition 2.1 Let Σ be a surface. A closed web (also called web) is a finite, oriented, trivalent
graph Γ = (V (Γ), E(Γ)) (where V (Γ) is the set of vertices and E(Γ) the set of edges) embedded in
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the interior of Σ and endowed with a thickness function ℓ : E(Γ) → N satisfying a flow condition:
vertices and thicknesses of their adjacent edges must be one of these two types:

(1)

The first type of vertex is called a merge vertex, the second a split vertex. In each of these types,
there is one thick edge and two thin edges. Oriented circles with non-negative thickness are regarded
as edges without vertices and can be part of a web. The embedding of Γ in Σ is smooth outside its
vertices, and at the vertices should fit with the local models in (1)

Figure 1: Example of web in R2

Definition 2.2 Let M be an oriented smooth 3-manifold with a collared boundary. A foam F ⊂ M
is a collection of facets, that are compact oriented surfaces labeled with non-negative integers and
glued together along their boundary points, such that every point p of F has a closed neighborhood
homeomorphic to one of the following (shows in Figure 2):

(1) a disk, when p belongs to a unique facet,
(2) Y × [0, 1], where Y is the neighborhood of a merge or split vertex of a web, when p belongs

to three facets,
(3) the cone over the 1-skeleton of a tetrahedron with p as the vertex of the cone, so that it

belongs to six facets.
The set of points of second type is a collection of curves called bindings and points of the third type
are called singular vertices. The boundary ∂F of F is the closure of the set of boundary points of
facets that do not belong to a biding. It is understood that F coincides with ∂F × [0, 1] on the
collar of ∂M . For each facet f of F , we denote by ℓ(f) ∈ {1, . . . , N} the thickness of f . A foam F
is decorated if each facet f of F is assigned a symmetric polynomial Pf ∈ Symℓ(f). In the second
local model, it is implicitly understood that thicknesses of the three facets are given by that of the
edges in Y . In particular, it satisfies a flow condition and locally one has a thick facet and two
thin ones. We also require that orientations of bindings are induced by that of the thin facets and
by the opposite of the thick facet. Foams are regarded up to ambient isotopy relative to boundary.
Foams without boundary are said to be closed.

Remark 2.3 Decorations on facets are depicted by dots adorned with symmetric polynomials in
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Figure 2: The three local models of a foam. The model in the middle we
will denoted Y (a,b) and the model on the right is denoted T (a,b,c).

the correct number of variables (the sickness of the facet they sit on). The decoration is the product
of all adornments of dots sitting on the facet. An other notation will be established later.

Notations 2.4 For a foam F , we write:
• F 2 for the collection of facets of F ,
• F 1 for the collection of bindings,
• F 0 for the collection of singular vertices of F .

We partition F 1 as follows: F 1 = F 1
o ⊔ F 1

−, where F 1
o is the collection of circular bindings and F 1

−
is the collection of bindings diffeomorphic to intervals.

Now we will define the N -degree of a foam: If s ∈ F 1
− any of its points has a neighborhood

diffemorphic to Y (a,b) for a given a and b and we define:

degN (s) = ab+ (a+ b)(N − a− b).

If v ∈ F0, it has a neighborhood diffeomorphic to T (a,b,c) for a given a, b and c and we write:

degN (v) = ab+ bc+ ac+ (a+ b+ c)(N − a− b− c).

Definition 2.5 Let F be a decorated foam and suppose that all decorations are homogeneous.
For all N in N, the N -degree of F is the integer degN (F ) ∈ Z given by the following formula:

degN (F ) :=
∑

f∈F 2

(deg(Pf ) − ℓ(f)(N − ℓ(f))χ(f))

+
∑

s∈F 1
−

degN (s) +
∑

v∈F 0

degN (v).

Example 2.6

(2)

In this example the foam has a N−degree equal to -26.
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In the case M = Σ × [0, 1], for all foam F define in M , a generic section of it: Ft = F ∩ {t}
with t ∈ [0, 1] is a web. We call F0 and F1 the input and the output of F respectively.
Now, for a given surface Σ, we define the category FoamΣ as follow:

• Objects are webs in Σ.
• HomF oamΣ(Γ0,Γ1) = {decorated foams F in Σ × [0, 1] where F0 = −Γ0 and F1 = Γ1}

where −Γ0 is the same web as Γ0 but every edges have the opposite orientation. Composition is
given by stacking foams on one another and rescaling. Decorations behave multiplicativly. The
identity of Γ for this composition is the foam Γ × [0, 1] decorated with the constant polynomial 1
on every facet. The N -degree is additive under composition.

If Γ is a web in a surface Σ, and h : Σ × [0, 1] → Σ is a smooth isotopy of Σ, one can define
F (h), the trace of h(Γ) in Σ × [0, 1], by: for all t ∈ [0, 1] F (h)t = ht(Γ). Such foams are called
traces of isotopies. They have degree 0.

Definition 2.7 A foam in a surface Σ × [0, 1] is basic if it is a trace of isotopy or if it is equal to
Γ × [0, 1] outside a cylinder B × [0, 1], and where it is given inside by one of the local models given
in Figure 3. A foam in Σ × [0, 1] is in good position if it is a composition of basic foams. If Γ is a
web in R2 we denote by V (Γ) the free k-module generated by foams in good position in R2 × [0, 1]
with ∅ as input and Γ as output.

Remark 2.8 Every foam in Σ × [0, 1] is isotopic to a foam in good position.

Example 2.9 The following foam in good position will come up later in section 4.3. It is the
composition of digon cup associativity and unzip foams with adequat thicknesses.

2.2 glN foam evaluation

Definition 2.10 A pigment is an element of P = {1, . . . , N}. If A is a subset of P, A denotes
P \A. The set P is endowed with the canonical order.
A coloring of a foam F is a map c : F 2 → P(P), such that:

• For each facet f ∈ F 2, the number of pigment on f , #c(f), is equal to ℓ(f).
• For each binding joining a facet f1 with thickness a, a facet f2 with thickness b, and a

facet f3 with thickness a + b, we have c(f1) ⊔ c(f2) = c(f3). This condition is called flow
condition.

A foam which endowed a coloring is called a colored foam. A facet of thickness 0 is colored by the
empty set.

Lemma 2.11 If (F, c) is a colored foam, i and j are two distinct element of P then,
(1) The union of all facets (with the identification coming from the gluing) of all the facets

which contain the pigment i in their colors is a surface. It is called the monochrome surface
of (F, c) associated with i and it is denoted Fi(c). The restriction we imposed on the
orientations of facets ensures that Fi(c) is oriented.

(2) The union of all facets which contain i or j but not both in their colors is a surface. It is
called the bichrome surface of (F, c) associated with i, j. It is the symmetric difference of
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Figure 3: Local basic foams models with their degrees below.

Fi(c) and Fj(c) and it is denoted Fij(c). The restriction we imposed on the orientations on
facets ensures that Fij(c) can be oriented by taking the orientations of the facets containing
i and the reverse orientations of the facets containing j.

(3) We may assume i < j. We consider a binding joining the facets f1, f2 and f3. Suppose that
i is in c(f1), j is in c(f2) and i and j are in c(f3). We say that the binding is positive with
respect to (i, j) if the cyclic order on the binding is (f1, f2, f3) and negative with respect
to (i, j) otherwise. The set Fi(c) ∩ Fj(c) ∩ Fij(c) is a collection of disjoints circles. Each of
these circles is a union of bindings, for every circle the bindings are either all positive or all
negative with respect to (i, j). We denote by θ+

i,j the number of positive circle or θ−
i,j the

number of negative circle.

Given F , a decorated closed foam, and c a coloring of F , the colored glN -evaluation of (F, c) is
the rational function in variables X1, . . . , XN defined by:

⟨F, c⟩N := (−1)s(F,c)P (F, c)
Q(F, c) (3)
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with
P (F, c) :=

∏
f∈F 2

Pf (Xc(f)) (4)

and
Q(F, c) :=

∏
1≤i<j≤N

(Xi −Xj)χ(Fij(c))/2 (5)

and where we have the following.
• Pf (Xc(f)) is the evaluation of the polynomial Pf in the indeterminates Xc(f).
• s(F, c) is the integer given by the following formula:

s(F, c) =
N∑

i=1

iχ(Fi(c))
2 +

∑
1≤i<j≤N

θ+
ij(F, c).

Finally we define the glN -evaluation of a foam F by:

⟨F ⟩N :=
∑

c

⟨F, c⟩N . (6)

where the sum runs over all colorings of F .

In the following sections, decorations of foams that we consider will often be power sums, and
so we introduce the following notation:

(7)

In particular, on a facet of thickness a, ♠0 = a. We will also extend the decorations allowed
thanks to the decoration ♠̂i which represent the ith power sum in the variable which are not in the
facet. In other words:

(8)

Proposition 2.12 ([RW18, Prop 2.18]) Let F be a foam, then ⟨F ⟩(X) is a symmetric polynomial
and if decorations are homogenous,

deg(⟨F, c⟩N ) = deg(⟨F ⟩N ) = degN (F ). (9)

Corollary 2.13 Let F be a foam with trivial decoration and c a coloring of F . The following
identity holds:

degN (F ) = −
∑

1≤i<j≤N

χ(Fij(c)). (10)
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3 Action on foams
In the following section, we define two actions of Lie algebras on foams. First we briefly recall how
these Lie algebra are defined and some interesting properties.

3.1 Two Lie algebras

Definition 3.1 Let sl2 be the Lie algebra over k generated by e, f and h with relations:

[h, e] = 2e, [h, f] = −2f, [e, f] = h. (11)

Definition 3.2 Let W be the Lie algebra generated by (Ln)n∈Z with relations ∀n,m ∈ Z:

[Ln, Lm] = (n−m)Ln+m. (12)

This algebra is called Witt algebra. Let us denote W∞
−1, the Lie subalgebra generated by symbols

(Ln)n⩾−1.
Proposition 3.3 The map:

ι :


e 7→ L−1
h 7→ 2L0
f 7→ −L1

(13)

induces a morphism of Lie algebras from sl2 to W whose image is in W∞
−1. If 2 is not a zero divisor

in k, the map is injective.
Proof : We just need to verify that relations given in (11) are satisfied by ι(e), ι(h) and ι(f):

[ι(h), ι(e)] = [2L0, L−1] = 2L−1 = ι(2e)
[ι(h), ι(f)] = [2L0,−L1] = 2L1 = ι(−2f)
[ι(e), ι(f)] = [L−1,−L1] = 2L0 = ι(h)

□

W∞
−1 acts on polynomial rings as follows. For any Q ∈ k[x1, . . . , xk]:

Ln ·Q := −
k∑

i=0
xn+1

i

∂Q

∂xi
(14)

Notes that we can restrict this action on k[x1, . . . , xk]Sk . Therefore, thanks to the proposition 3.3
sl2 acts also on k[x1, . . . , xk]Sk via these relations:

e ·Q = −
k∑

i=0

∂Q

∂xi
(15)

h ·Q = − deg(Q) Q (16)

f ·Q =
k∑

i=0
x2

i

∂Q

∂xi
(17)

Definition 3.4 A Witt-sequence (λn)n≥−1 is a sequence such that λ−1 = 0 and for any m,n ∈ N,

nλn −mλm = (n−m)λm+n.

For example, for any λ ∈ k, the sequence given by λn = λ(n+ 1) is a Witt sequence.
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3.2 Action of W∞
−1 on foams

For the rest of this section, fix an element s ∈ k, and two Witt-sequences (λn)n∈N−1 and (νn)n∈N−1 .
We now define a sequence of operators (Ln)n∈N−1 acting on basic foams. For n ∈ N−1:

Ln


 = (18)

Ln


 = Ln


 = 0 (19)

(20)

Ln


 = λn + µn (21)

+ s
∑

k+l=n

Ln



 = −λn − µn (22)

+ s
∑

k+l=n

(23)

Ln


 = λn + µn (24)

− s
∑

k+l=n

(25)

9



Ln


 = −λn − µn (26)

− s
∑

k+l=n

(27)

Ln


 = 1

2
∑

k+l=n

(28)

Ln


 = 1

2
∑

k+l=n

(29)

Ln



 = −1
2
∑

k+l=n

(30)

Lemma 3.5 Mapping Ln to Ln for all n ∈ N−1 defines an action of W∞
−1 on the k-module generated

by foams in good position.

Proof. We need to prove that for all n,m ∈ N−1, [Ln,Lm] = (n − m)Ln+m where [Ln,Lm] :=
Ln ◦ Lm − Lm ◦ Ln. Without loss of generality, we can assume that n ≤ m. For any foams F and
G in good positions we have:

[Ln,Lm](F ◦G) = Ln(Lm(F ) ◦G+ F ◦ Lm(G)) − Lm ◦ (Ln(F ) ◦G+ F ◦ Ln(G))
= ((Ln ◦ Lm(F ) − Lm ◦ Ln(F )) ◦G+ F ◦ (Ln ◦ Lm(G) − Lm ◦ Ln(G))
= [Ln,Lm](F ) ◦G+ F ◦ [Ln,Lm](G).

So the operator [Ln,Lm] satisfies the Leibniz rules and (n−m)Ln+m as well. Therefore it is enough
to prove the relation for basic foams. For traces of isotopies, this is trivial. For polynomial foams,
the identity is satisfy because W∞

−1 act on polynomial foams as it acts on symmetric polynomials.
So, we need to check that the identity hold on caps, cups, zips, unzips, saddles, digon-caps and
digon-cups foams. In all case this is just a computation, we treat the case of saddle:
We noticed that for all n, k ∈ N,

Ln(♠k) = −k♠k+n and Ln(♠̂k) = −k♠̂k+n.
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We set:

Sk,l :=

and S is the saddle without decorations. Therefore:

Ln ◦ Lm(S) = −1
2
∑

k+l=m

Ln(Sk,l)

and,
Ln(Sk,l) = −kSk+n,l − lSk,l+n − 1

2
∑

i+j=n

S(i,k),(l,j).

S(i,k),(l,j) denote the saddle decorated by ♠i,♠k, ♠̂l, ♠̂j . Moreover, ∑k+l=m

∑
i+j=n S(i,k),(l,j) is

symmetric in n and m so:

Ln ◦ Lm(S) − Lm ◦ Ln(S) = 1
2
∑

k+l=m

kSk+n,l + lSk,l+n − 1
2
∑

k+l=n

kSk+m,l + lSk,l+m.

Now we distinguish three cases to established the coefficient of Si,j in the previous formula:

• if 0 ≤ i ≤ n then m ≤ j ≤ n+m and the coefficient of Si,j is: j−n
2 − j−m

2 = −n−m
2

• if n ≤ i ≤ m then n ≤ j ≤ m and the coefficient of Si,j is: i−n
2 + j−n

2 = i+j−2n
2 = −n−m

2
• if m ≤ i ≤ n+m then 0 ≤ j ≤ n and the coefficient of Si,j is: i−n

2 − i−m
2 = n−m

2 .
Therefore,

[Ln,Lm](S) = −n−m

2
∑

i+j=n+m

Si,j = (n−m)Ln+m(S)

The computation for a cup is detailed on [QRSW24, p24], but the action is defined on spherical
foams, in our framework you need to set νn = 0.
Proposition 3.6 Let F be a decorated closed foam, then for all n ∈ N−1

⟨Ln · F ⟩N = Ln · ⟨F ⟩N (31)

3.3 Action of sl2 on foams

Thanks to Proposition 3.3 we can convert all results of the previous section on W∞
−1 and convert

them on sl2.
We fix t1 = λ1+s and t2 = µ1+s by using the last section, we can have define e := L−1,h := 2L0

and f := L1 . These three operators verify the following relations:
The operator e acts via −

∑
i

∂
∂xi

on polynomials and by 0 on any other basic foam. The
operators h and f are defined as follows:

h


 = − deg(R) (32)
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h


 = h


 = 0 (33)

h


 = ab(t1 + t2) (34)

h



 = ab(t1 + t2) (35)

h


 = −ab(t1 + t2) (36)

h


 = −ab(t1 + t2) (37)

h


 = a(N − a) (38)

h


 = a(N − a) (39)

h



 = −a(N − a) (40)

f


 = (41)
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f


 = f


 = 0 (42)

f


 = −t1 − t2 (43)

f



 = −t1 − t2 (44)

f


 = t1 + t2 (45)

f


 = t1 + t2 (46)

f


 = −1

2 − 1
2 (47)

f


 = −1

2 − 1
2 (48)

f



 = 1
2 + 1

2 (49)

Next lemma and proposition are direct consequences of the previous section and proposition
3.3.
Lemma 3.7 Mapping e to e, h to h and f to f for all n ∈ N−1 defines an action of sl2 on the
k-module generated by foams in good position.
Proposition 3.8 Let F be a decorated closed foam, then for all x ∈ sl2

⟨x · F ⟩N = x · ⟨F ⟩N (50)
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3.4 glN -state space

In this section we build a functor between the category Foam (which refers to FoamR2) and
the category of projective, graded ZN -module. Let Γ be a web, and denote by VN (Γ) the free
ZN -module generated by HomF oam(∅,Γ). It is a graded by the degree of foams. Consider the
ZN -bilinear form defined by:

⟨., .⟩N

∣∣∣∣∣ HomF oam(∅,Γ) −→ ZN

(F,G) 7−→ ⟨F,G⟩N := ⟨Ḡ ◦ F ⟩N
, (51)

where G is the foam obtained by mirroring G along R2 ×
{

1
2

}
, so that G ◦ F is a closed foam and

⟨Ḡ ◦ F ⟩N is well defined. Moreover thanks to [RW18, Prop 2.18] we have ⟨Ḡ ◦ F ⟩N ∈ ZN . Let us
denote:

Ker(⟨., .⟩N ) :=
⋂

G∈HomF oam(∅,Γ)
Ker(⟨ . , G⟩N ). (52)

Now we can define the functor:

FN :

∣∣∣∣∣∣∣
Foam → ZN -Modgr

Γ 7→ VN (Γ)/Ker(⟨., .⟩N )

(F : Γ → Γ′) 7→ (ψF : FN (Γ) → FN (Γ′))
(53)

where ψF is induced by the following morphism:

ψ̃F

∣∣∣∣∣ VN (Γ) −→ VN (Γ′)
G 7−→ F ◦G (54)

The categories Foam and ZN -Modgr are both endowed with a monoidal structure. In Foam
the tensor product is given by disjoint unions of webs and foams. The tensor product on ZN -Modgr

is given by the tensor product over ZN .

Proposition 3.9 The functor FN is monoidal and satisfies the following local relations (and their
mirror images):

FN (∅) ≃ ZN (55)

FN

  ≃
[
N

a

]
FN (∅) (56)

FN

  ≃ FN

  (57)

FN

  ≃
[
a+ b

a

]
FN

( )
(58)

(59)
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FN

  ≃
[
N − a

b

]
FN

( )
(60)

FN


 ≃ FN

  (61)

⊕ [N −m− 1]FN

  (62)

FN


 ≃

b⊕
j=max(0,b−a)

[
c

d− j

]
FN


 (63)

These isomorphisms (except the first one) are realized as images of (linear combinations of) foams
under FN .

Wu ([Wu13, Theorem 2.4]) proved that the relations given in Porposition3.9 are enough to
reduce any web to empty set. Moreover FN (∅) ≃ ZN which is a finitely generated projective
ZN -module. Since being projective and finitely-generated is preserved under finite direct sums and
finite direct summands, the glN -state space of any web is a finitely generated projective ZN -module.
Moreover thanks to Quillen Suslin’s theorem, finitely generated projective ZN -modules are free.

Corollary 3.10 The functor F takes value in ZN -projgr, the category of finetely generated,
graded, projective (and therefore free) ZN -modules.

For every web Γ, the action of W∞
−1 on foams gives an action of W∞

−1 on FN (Γ). Indeed, this
action is well defined because Ker(⟨., .⟩N ) is stable by the action of W∞

−1: Let F be a foam in
Ker(⟨., .⟩N ) and x ∈ W∞

−1 then for all G ∈ HomF oam(∅,Γ) we have:

⟨x · F,G⟩N = ⟨G ◦ (x · F )⟩N

= ⟨x · (G ◦ F )⟩N − ⟨(x ·G) ◦ F )⟩N

= x · ⟨G ◦ F ⟩N − ⟨G′ ◦ F ⟩N = 0.

Last line is obtained by using the Proposition 3.6 and the fact that G′ := x ·G ∈ HomF oam(∅,Γ).

The action of W∞
−1 on foams is not compatible with the functor FN , indeed for all x ∈ W∞

−1 for
all F : Γ → Γ′ and for all G ∈ FN (Γ):

FN (F )(x ·G) = F ◦ (x ·G) = x · (F ◦G) − (x · F ) ◦G = x · FN (F )(G) − FN (x · F )(G). (64)

Due to the Leibniz rule, the ZN -linear map FN (F ) intertwines the action of W∞
−1 if and only if for

all x ∈ W∞
−1, FN (x · F ) = 0. In this, case one says that FN (F ) is W∞

−1−equivarient. The previous
statement can be apply to sl2-action too.

4 Twist action
As seen above, W∞

−1-action and sl2-action on foams and on states spaces are not always compatible.
To circumvent this problem we introduce twist on state spaces.
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4.1 About twists in general

This section is wrote in a general case and will be adapted on our two cases (sl2 and W∞
−1) in the

two next sections.
Let g be a Lie algebra, A a commutative g-module algebra and M an A#g-module, that

a g-module structure with an A-module structure, which satisfies the following identity for all
g ∈ g, a ∈ A and m ∈ M :

g ·g (a ·A m) = (g · a) ·A m+ a ·A (g ·g m).

A linear map τ : g → A is flat if for all g1, g2 in g, one has:

τ([g1, g2]) = g1 · τ(g2) + g2 · τ(g1).

If τ is flat, one can check that there is a new A#g-module structure on the rank-one free module
A it self define by:

g ·gτ a := g ·g a+ τ(g)a.

More generally, the following formula defines a new g-action on any A#g-module M via:

g ·gτ m := g ·g m+ τ(g) ·A m.

One check that the twisted action ·gτ , similar as ·g, is compatible with the A-action. In other words,
this gives M a new A#g-mod structure. If τ is flat, we denote by M τ the module endowed with
the action ·gτ . One can readily see that, as A#g-modules,

M τ = Aτ ⊗
A
M.

This means in particular that if τ, σ : g → A are flat, then (M τ )σ ≃ M τ+σ.
In our case, W∞

−1 (resp sl2) is our Lie algebra and for each edge e with label a in a web Γ. We
introduce the algebra:

De := k[x1, . . . , xa, y1, . . . , yN−a]Sa×SN−a

where (xi)i are the variables used for the decorations of the facet associate to the edge e, and (yi)i

are the others variables. This algebra acts on the glN -state space FN (Γ) associated to Γ by adding
a decoration on the facet bounding to the edge e. Consequently the algebra

DΓ :=
⊗

e∈E(Γ)
De

acts on FN (Γ). For each edge e, the algebra De is endowed with a natural W∞
−1-module (resp

sl2-module) structure given by differential operators:

Ln = −
a∑

i=0
xn+1

i

∂

∂xi
−

N−a∑
i=1

yn+1
i

∂

∂yi
.

and thus so is DΓ.
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Figure 4: Example of a green-dotted web.

4.2 Green dots with sl2-action

Definition 4.1 A green-dotted web is a web Γ endowed with a finite collection D of green dots,
that are marked points with multiplicities (in k) located in the interior of edges of Γ. These green
dots are two types ◦ and •. If a given edge carries several green dots of the same type, they may
be replaced by one dot of that type on this edge with the sum of all multiplicities.

The Figure 4 shows an example of green-dotted web.
Let (Γ, D) be a green-dotted web. For each green dot d of multiplicity λ ∈ k, define Γd to

be the foam Γ × [0, 1] with a twisted action of sl2. Each green dot lives on an edge, hence each
foam bounding Γ has a neighborhood of that green dots homeomorphic to ]0, 1[×[0, 1[. The twists
induced by green dots is local and we decipt the modified sl2-action on these neighborhoods.

e
( )

= e
( )

= 0 (65)

h
( )

= −λ (66)

h
( )

= −λ (67)

f
( )

= λ (68)

f
( )

= λ (69)

Recall that to act on a concret foam, one uses the Leibniz rule, so that the twist induced by
various green-dot on a given web add up.

It is convenient to introduce floating green dots on the plane: one can view them as being
on edges of thickness 0. A floating hollow green dot ◦ do not alter the Lie algebra action since
in this context ♠0 = ♠1 = 0. However a solid green dot • label by λ, twist the action of h by
−λ♠̂0 = −λN and the action of f by λ♠1 = λP1. With this new convention, one has the following
local relation:

= (70)
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Proposition 4.2 For any green-dotted web (Γ, D), twisting the actions of e, f and h as above
endows FN (Γ) with an sl2-module structure.

Proof. By additivity of twists, it is enought to prove for the case of a single edge e of thickness
a contains a hollow dot labeled α and a solid dot labeled β. The verification of the flatness of
τ : sl2 → De ⊆ DΓ encoded by:

τ(e) = 0, τ(h) = −aα− (N − a)β, τ(f) = α♠1 + β♠̂1

is detailed on ([QRSW23, prop 3.13]).

After some computations we can allows green dots to migrate along a web in the following ways:
Lemma 4.3 The following DΓ#sl2-modules are isomorphic:

FN


 ≃ FN


 , FN


 ≃ FN




FN


 ≃ FN


 , FN


 ≃ FN




These manipulations of green dots, will be referred as green dot migration.

4.3 Useful morphism in the sl2 case

In this section we introduce morphisms which play an important role in the link homology to be
introduced in the section 5.
Lemma 4.4 The two different orientations of the foam

induce isomorphisms

α : → and α : →

of sl2-equivariant glN -state spaces associated with webs. Their inverses are also denoted by α.
Lemma 4.5 The foams

and
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induce morphisms

v : → and ζ : →

of sl2-equivariant glN -state spaces associated with webs.

Lemma 4.6 The foams

and

induce morphisms

κ : ∅ → and κ : → ∅

of sl2-equivariant glN -state spaces associated with webs.

Lemma 4.7 The foam

induces morphism

σ : →

of sl2-equivariant glN -state spaces associated with webs.

Lemma 4.8 The foams

and

induce morphisms

χ : →
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χ : →

of sl2-equivariant glN -state spaces associated with webs.

Lemma 4.9 The foams

and

induce morphisms

η : →

η : →

of sl2-equivariant glN -state spaces associated with webs.

4.4 Green dots with W∞
−1-action

Definition 4.10 A Witt green-dotted web (also called green-dotted web) is a web Γ endowed with
a finite collection D of green dots, that are marked points or triangles labeled by λ an element of
k for points or (λj)j a Witt-sequence for triangles. These green dots are located in the interior of
edges of Γ. There exist four types of green dots ◦, △, ▲ and •. If a given edge carries several green
dots of the same type, they may be replaced by one dot of that type on this edge labeled by the
sum of labels.

The twists induced by green dots is local and we depict the modified W∞
−1-action on these

neighborhoods. Let λ an element of k and (λj)j∈N−1 a Witt-sequence.

Ln


 = −λ

n∑
i=0

(71)
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Ln



 = −λn (72)

Ln



 = −λ
n∑

i=0
(73)

Ln



 = −λn (74)

Recall that to act on a concrete foam, one uses the Leibniz rule, so that the twist induced by
various green-dot on a given web add up.

Proposition 4.11 For any green-dotted web (Γ, D), twisting the action of Ln as above endows
FN (Γ) with an W∞

−1-module structure.

Proof. From a previous discussion, we know that if there are no green-dots, then the state space
carries a W∞

−1-action.
By additivity of twists, it is enough to prove the proposition for the case that a single edge e
of thickness a of contains a circular hollow dot labeled λ and a triangular hollow dot labeled
(λn)n∈N−1 . The computation for a circular and a triangular solid dot is similar. Let τ → DΓ be
the map encoded by these two green dots:

τ(Ln) = −λ
n∑

i=0
♠i♠n−i − λn♠n.

We recall the action of Ln on ♠i :
Ln(♠k) = −k♠k+n.

Let us check if τ is flat.

Lm · τ(Ln) = λ
n∑

i=0
(i♠i+m♠n−i + (n− i)♠i♠n+m−i) + λnn♠n+m
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Thus,

Ln · τ(Lm) − Lm · τ(Ln) =λ
m∑

i=0
(i♠i+n♠m−i + (m− i)♠i♠n+m−i) + λmm♠n+m

− λ
n∑

i=0
(i♠i+m♠n−i + (n− i)♠i♠n+m−i) − λnn♠n+m

=λ
n∑

i=0
(m− n)♠i♠n+m−i + λ

m∑
i=n+1

(m− i)♠i♠n+m−i + λ
m+n∑
i=n

(i− n)♠i♠n+m−i

− λ
n+m∑
i=m

(i−m)♠i♠n+m−i + (mλm − nλn)♠n+m

=λ
n∑

i=0
(m− n)♠i♠n+m−i + λ

m+n∑
i=m

(m− n)♠i♠n+m−i + λ
m−1∑
i=n

(i− n)♠i♠n+m−i

+ λ
m∑

i=n+1
(m− i)♠i♠n+m−i + (m− n)λm+n♠n+m

=(m− n)λ
m+n∑
i=0

♠i♠m+n−i + (m− n)λn+m♠n+m

=(n−m)τ(Lm+n).

Remark 4.12 By choosing a triangular dot labeled by (λ
2 (j + 1))j one found the definition of

green dots in the sl2 case.

4.5 Useful morphism in the W∞
−1 case

Lemma 4.13 The two different orientations of the foam

induce isomorphisms

α : → and α : →

of W∞
−1-equivariant glN -state spaces associated with webs. Their inverses are also denoted by α.

Lemma 4.14 The foams

and
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induce morphisms

v : → and ζ : →

of W∞
−1-equivariant glN -state spaces associated with webs.

Proof. We redact the proof for v. By using the Leibniz rule and the equations (21), (71) and (72)
we have:

Ln


 = λn + µn

+ s
∑

k+l=n

− bλn − aµn

−s

2


∑

k+l=n

− −



We denote by ♠a
· a decoration on the facet of thickness a. By definition of ♠· for all i ∈ N we

have:
♠a+b

i = ♠a
i + ♠b

i .

By using the equality, the computation between the parenthesis can be summarize by:∑
k+l=n

♠a+b
k ♠a+b

l − ♠a
k♠a

l − ♠b
k♠b

l =
∑

k+l=n

(♠a
k + ♠b

k)(♠a
l + ♠b

l ) − ♠a
k♠a

l − ♠b
k♠b

l

=
∑

k+l=n

♠a
k♠b

l + ♠a
k♠b

l

= 2
∑

k+l=n

♠a
k♠b

l

Thus, we obtain that Ln


 = 0.

23



Lemma 4.15 The foams

and

induce morphisms

κ : ∅ → and κ : → ∅

of W∞
−1-equivariant glN -state spaces associated with webs.

Lemma 4.16 The foam

induces morphism

σ : →

of W∞
−1-equivariant glN -state spaces associated with webs.

Lemma 4.17 The foams

and

induce morphisms

η : → and θ : →

of W∞
−1-equivariant glN -state spaces associated with webs.

Lemma 4.18 The foam

24



induce morphism

χ : →

of W∞
−1-equivariant glN -state spaces associated with webs.

5 Link homology
In the section 3.4, we associated a ZN -module to any closed web. this construction leads to a
definition to a definition of Khovanov-Rozansky glN -link homology. For more details, see [RW18].
We also saw in the previous section how sl2 acts on the state space associated to a web. In this
section we show how the sl2-action extends to Khovanov-Rozansky homology. All proof of this
section can be found in [QRSW23].

In the following section, edges will always have thickness 1 or 2 so we denote an edge of thickness
1 by ( | ) and an edge of thickness 2 by ( ‖ ).

5.1 Link homology definition

As Khovanov homology ([Kau16]) we associate a hypercube shaped complex to any link by speci-
fying locally a length 2 complex to any crossing. We define the following cohomologically graded
braiding complexes:

T = := −−−−−−−→ q−1 (75)

T ′ = := q −−−−−−−→ (76)

where in both complexes we assume that the terms

sit in cohomological degree 0. in this diagram FN (·) has been omitted to maintain readability.
For a link L, define KRsl2

N (L,R) := KRsl2
N,t1,t2

(L,R) to be the Khovanov-Rozansky glN -homology
of L with coefficients in a ring R, equipped with the action of the Holf algebra U(sl2). When the
coefficient ring R is clear from context we will also write KRsl2

N (L) for simplicity. To prevent
overloaded diagrams, we will mostly drop KRsl2

N (·) around its.
The rest of the section will be devoted to proving that this link homology is invariant under

Reidemeister moves.
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Theorem 5.1 The homology KRsl2
N,t1,t2

(L,ZN ) is an invariant of framed oriented links.
For a homology class α and an element g ∈ sl2, we denote this action by g · α.

5.2 Reidemeister moves

We consider link diagram with green dots. These green dots should appear on any resolutions used
to compute their homology. As we shall see, the homology of a link diagram with green dots does
not depend on the precise location of green dots on a given component. Hence the green dot data
can be thought as a framing. The proof of the next lemma come from ideas of [KR13] and is wrote
in [QRSW23].
Lemma 5.2 Let c, d ∈ k. Then there are isomorphisms of complexes in the relative homotopy
category

≃ and ≃ (77)

≃ and ≃ (78)

Proposition 5.3 (Reidemeister I)
There are isomorphisms in the relative homotopy category

≃ tq−N and ≃ t−1q−N . (79)

Proposition 5.4 (Reidemeister II)
There are isomorphismsin the relative homotopy category

≃ ≃ (80)

and,
≃ . (81)

Proposition 5.5 (Reidemeister III)
For i = 1, . . . , n− 1, there are isomorphisms in the relative homotopy category

≃ . (82)
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