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1 Partition
A partition is a finite λ = (λ1, λ2, . . . , λn) such that λi ≥ λi+1 and λi ≥ 0.
The weight of λ is |λ| = λ1 + . . . + λn = N , λ is a partition of N .
The length of λ is l(λ) = n.

We can represent partitions as diagrams formally define as a set of square in position (i, j) ∈ Z2 (matrices
convention) such that 1 ≤ j ≤ λi. For example the diagram of the partition λ = (5, 4, 2, 1) of 12 is:

λ =

The conjugate of a partition λ is the partition tλ whose diagram is the transpose of the diagram of
lambda. For example, if λ = (5, 4, 2, 1).

tλ =

Another notation for partitions which is occasionally useful is the following due to Frobenius. Suppose
that the main diagonal of th diagram λ consists of r nodes (i, i). Let αi = λi − i be the number of nodes
in the ith row of λ to the right of (i, i), and let βi = tλi − i be the number of nodes in the ith column of λ
below (i, i), then we denote the partition λ by:

λ = (α1, . . . , αr|β1, . . . , βr) = (α|β).

Proposition 1.1. Let λ be a partition and let m ≥ λ1, n ≥t λ1. Then the m + n numbers

λi + n − i (1 ≤ i ≤ n), n − 1 + j − tλj (1 ≥ j ≥ m)

are a permutation of {0, 1, . . . , m + n − 1}.

Let λ and µ be two partitions, we define λ + µ to be the sum of the sequences λ and µ:

(λ + µ)i := λi + µi.

Also we define λ ∪ µ to be the partition whose parts are those of λ and µ, arranged in descending order. For
example λ = (3, 2, 1) and µ = (2, 1) then λ + µ = (5, 3, 1) and λ ∪ µ = (3, 2, 2, 1, 1). We define λ × µ to be
the partition whose part are (min(λi, µj)) for all i ≤ l(λ) and j ≤ l(µ), arranged in decreasing order.
We have the following relations:

t(λ ∪ µ) = tλ + tµ
t(λ × µ) = tλtµ
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We can define an ordering Nn on Pn, the set of partition of n, called the natural (partial) ordering:

λ >N µ ⇔ λ1 + . . . + λi ≥ µ1 + . . . + µi ∀i ∈ J1, nK.

If n ≤ 6 it is not a total ordering (ex: (3, 1, 1, 1) and (2, 2, 2)).

2 Symmetric polynomials
2.1 The ring of symmetric polynomials Λ

mλ(x1, . . . , xn) =
∑

α

xα,

summed over all distinct permutations α of λ = (λ1, . . . , λn). Therfore, (mλ)λ is a Z basis of Λ.

2.2 Remarkable polynomials
For each r ≥ 0 the rth elementary symmetric polynomial er, is the sum of all products of r distinct variables
xi, so that e0 = 1 and

er =
∑

i1<...<ir

xi1 . . . xir
= m(1r)

We have Λ = Z[e0, e1, . . .]. For each partition λ = (λ1, λ2, . . . , ) define

eλ := eλ1eλ2 . . .

Proposition 2.1. Let λ be a partition, tλ its conjugate. Then,

etλ = mλ +
∑

λ>N µ

aλ,µmµ,

where the aλ,µ are non-negative integers.

For each r ≥ 0 the rth complete symmetric polynomial hr, is the sum of all monomials of total degree r
in the variables x1, x2, . . . so that

hr =
∑

|λ|=r

mλ.

We have Λ = Z[h1, h2, . . .]

Proposition 2.2.
n∑

r=0
(−1)rerhn−r = 0.

For each partition λ = (λ1, λ2, . . . , ) define

hλ := hλ1hλ2 . . .

(hλ)λ is a Z basis of Λ.

2.3 Schur polynomials
Suppose to begin with that the number of variables is finite, say x1, . . . , xn. Let xα = xα1

1 . . . xαn
n be a

monomial, and consider the polynomial

aα = aα(x1, . . . , xn) =
∑

σ∈Sn

ε(σ) σ(xα).
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We set that aα = 0 if α has more than n non empty (number of element in our set of variable) lines. Because
aα is skew-symmetric ie

σ(aα) = ε(σ)aα,

aα is equal to zero unless α1, . . . , αn are all distinct. So α = λ + δ where δ = (n − 1, n − 2, . . . , 1, 0). Thus,
we have,

aα = det(xλj+n−j
i )1≤i,j≤n.

Because aα is divisible by the Vandermonde, which is equal to aδ, we can define the Schur polynomial
associated to a partition λ:

sλ = aλ+δ/aδ

that is a homogenous symmetric polynomial of degree |λ|. We set that sλ = 0 if λ has more than n (number
of element in our set of variable) non-empty lines.

We define [Mac98, I.4] the scalar product on Λ, by requiring that the Z bases (hλ) and (mλ) should be
dual to each other:

⟨hλ, mµ⟩ = δλµ.

Proposition 2.3. Each Schur polynomial sλ can be expressed in the Λ-bases (ek) and (hk):

sλ = det(hλi−i+j)1≤i,j≤n

where n ≥ l(λ).
sλ = det(etλi−i+j)1≤i,j≤m

where m ≥ l(tλ).

Example 2.4. Thank to the above relation we have:

s(1)r = er and s(k) = hk.

Proposition 2.5. The family of Schur polynomials (sλ)λ is an orthogonal basis of Λ.

Let λ and µ be partitions, and define the skew Schur polynomial sλ/µ thanks the coefficients:

⟨sλ/µ, sν⟩ = ⟨sλ, sµsν⟩ =: cλ
µν ,

thus, sλ/µ =
∑

ν⟨sλ, sµsν⟩sν =
∑

ν cλ
µνsν . Furthermore we have the relation sµsν =

∑
λ cλ

µ,νsλ.
Also cλ

µ,ν = 0 unless |λ| = |µ| + |ν|, so that sλ/µ is homogenous of degree |λ| − |µ| and is zero if |λ| < |µ|.

Proposition 2.6. The skew Schur polynomial sλ/µ is zero unless µ ⊂ λ, in which case it depend only on
the skew diagram λ − µ. If θi are the components of λ − µ then we have sλ/µ =

∏
sθi

. If the set of variable
is finite sλ/µ(x1, . . . , xn) = 0 unless 0 ≤ tλi − tµi ≤ n for all i ≥ 1.

Proposition 2.7. [Mac98, (5.9)] Let X and Y be two finite sets of independent variables. We have the
following relation:

sλ(X ⊔ Y ) =
∑

µ

sλ/µ(X)sµ(Y ) =
∑
µ,ν

cλ
µ,νsµ(Y )sν(X).

More generally,
sλ/µ(X ⊔ Y ) =

∑
ν

µ⊂ν⊂λ

sλ/ν(X)sν/µ(Y ).

Proposition 2.8. [RW20, (A.6)] Let A, B and C be three sets of variables, and γ a Young diagram. Then
the following identity holds:∑

α,β

cγ
αβ(−1)|α|sα(A ∪ C)stβ(B ∪ C) =

∑
i+j=n

cγ
αβ(−1)|α|sα(A)stβ(B).
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Proposition 2.9. If a and b are two non-negative integers, we have:

cγ
αβ =

{
1 if α is in T (a, b) and β = tα̂,
0 else

Corollary 2.10. Let A, B and C be three sets of variables, and γ a Young diagram. Then the following
identity holds: ∑

α∈T (a,b)

(−1)|α|sα(A ∪ C)sα̂(B ∪ C) =
∑

α∈T (a,b)

(−1)|α|sα(A)sα̂(B).

Corollary 2.11. Let a and b two non-negative integers, and Z = X ⊔ Y a set of variables. We have:

(−1)absρ(a,b)(X) =
∑

α∈T (a,b)

(−1)|α|sα(Z)sα̂(Y ).

Corollary 2.12. We suppose that Z = X ⊔ Y , |Z| = N , and X = {x}. If N ≤ k are two positive integers,
we have the following relation:

xk =
N−1∑
i=0

(−1)ihk−i(Z)ei(Y ).

If N > k we have:

xk =
k∑

i=0
(−1)ihk−i(Z)ei(Y ).

(not the most general formulation)

Proof. By taking a = k, b = 1, |X| = 1, |Z| = N ≤ k in (2.11), we have:

(−1)ksρ(1,k) = (−1)kxk,

and,

∑
α∈T (k,1)

(−1)|α|sα(Z)sα̂(Y ) =
k∑

i=0
(−1)is(i)(Z)s(1k−i)(Y )

=
k∑

i=k−N+1
(−1)is(i)(Z)s(1k−i)(Y )

=
k∑

i=k−N+1
(−1)ihi(Z)ek−i(Y )

=
N−1∑
i=0

(−1)k−ihk−i(Z)ei(Y ).

Corollary 2.13. We suppose that Z = X ⊔ Y , |Z| = N , and X = {x}. We have the two following relations:

ek(Y ) =
N∑

i=0
(−1)k−iei(Z)xk−i if k ≥ N

ek(Y ) =
k∑

i=0
(−1)k−iei(Z)xk−i if k < N

(not the most general formulation)
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